If it's not what You are looking for type in the equation solver your own equation and let us solve it.
66x^2+157x+66=0
a = 66; b = 157; c = +66;
Δ = b2-4ac
Δ = 1572-4·66·66
Δ = 7225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7225}=85$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(157)-85}{2*66}=\frac{-242}{132} =-1+5/6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(157)+85}{2*66}=\frac{-72}{132} =-6/11 $
| 3x+12-7x-4-8x=8 | | 17-3n=-3(n-7) | | 43x+1=8x | | 4^3x+1=8^x | | 18.63-5.5k=5.65-17.18-8.1k | | 0=-15x^2+1650x-45,000 | | 12+6x+14-31=15 | | -13x-40=-150 | | 5(x-7)=-39+5x | | -12q-7=-11q | | -x=-74 | | 24x2=6x | | -14+14n=11-18n+7 | | -12.1r+14.47=-1.4r+8.6r-18.34 | | -3(-7x-3)-6(8-5x)=35+52x | | 16c-18=-9+13c | | 3c+10-8c+4c=10 | | 12d=-20+17d | | -0.8b-17.83=1.1b+13.71 | | -19.6y=-19.9y-6 | | -(4y+4)-(-3y+9)=-2 | | 5v-10=6v | | -9p-13+8p=2p+17 | | 6z-12=5z+6 | | 6-2c=-2-3c-1 | | (3x-2.1)^2+15x^2=11.85 | | -9-4j=-j+6 | | -94j=-j+6 | | 175=39-c | | 6x+20=2x-60 | | 3x-2(x+3)=-8 | | 4x+3=3x+9x |